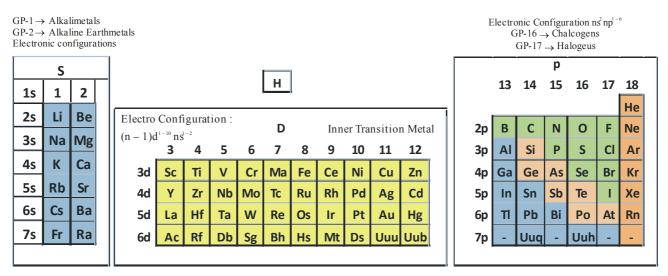
UNIT : 11 CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Important Points

Modern Periodic law: The physical and chemical properties of elements are periodic function of their atomic numbers.


The chemical properties of elements are governed by the number of electrons in the outermost orbital of atom. Elements with similar electronic a configuration posses similar properties.

- Modern Periodic Table: The two terms used to describe the periodic table are period and group.
 - Period: The horizontal rows of the periodic table are known as periods. Each period starts with filling up of a new quantum shell and continues till the p-orbital of the same shell is filled up. There are seven periods in the modern periodic table.

Period Number	Orbital's being filled up	Number of elements
1	1s	2
2	2s 2p	8
3	3s 3p	8
4	4s 3d 4p	18
5	5s 4d 5p	18
6	6s 4f 5d 6p	32
7	7s 5f 6d 7p	Incomplete

◆ NUMBER OF ELEMENTS IN THE DIFFERENT PERIODS

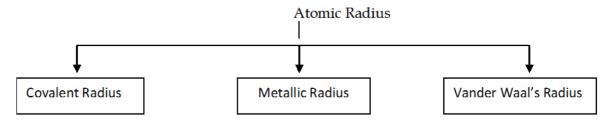
Group: The vertical columns of the periodic table are known as groups. There 18 groups; which are numbered 1to 18 according to IUPAC recommendations. Elements of same group have same electronic configuration.

Downloaded from www.studiestoday.com

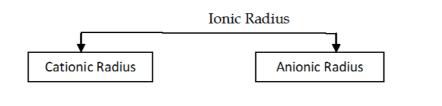
Electronic Configuration : $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$						Inner Transition elements								
f-section														
4f Lenthenoids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
5f Actinoids	Th	Ра	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Effective Nuclear charge: In a poly electronic atom, the internal electrons repel the electrons of the outermost orbit. This result in decrease of the nuclear attraction of the electrons in the outermost orbit. This part of nuclear charge is known as effective nuclear charge.

- Z* Effective Nuclear charge
- Z Nuclear charge
- σ shielding constant


Electrons in orbital's -→ Of shells→	σ per electron in n	Orbit (n-1)	(n-2),(n-3)
s or p orbital	0.35	0.85	1
d or f orbital	0.35	1	1

NOTE: For 1s electron, $\sigma = 0.30$ (in case of two electron system.)

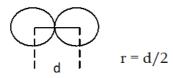

For H-atom (Z=1), there is no screening, being one electron system.

 $\sigma = 0$ and $Z^* = Z = 1$

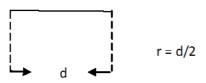
Element	Z	n	Value of σ for (Z- 1) electrons			Total	Z [*] =Ζ- σ	
			n	(n-1)	(n-2)	(n-3)		
Be	4	2	0.35	2×0.85			1.95	1.95
Ν	7	2	4× 0.35	2×0.85			3.10	3.90
K	19	4	0	8×0.85	8×1	2×1	16.8	2.20

ii) Ionic Radius can be expressed in two ways

242


1) Covalent Radius :

Covalent Radii = d/2


Covalent radius is equal to half the internuclear distance between two identical atoms joined by a single covalent bond.

2) Metallic Radius:

Metallic Radius is equal to half the shortest internuclear distance between two atoms in metallic crystal.

3) Vander waals Radius:

Vander waal's > metallic > Covalent

ii) Ionic Radius: Distance between the nucleus and the limit of electron cloud scattered around the nucleus.

Cationic Radii: Ionic radii of a cation As the positive charge increases the size (cationic radii) decreases.

Eg. $M^{_{3+}} < M^{_{2+}} < M^{_{1+}} < M$

Size "(1/ amount of positive charge) or (1/ effective nuclear charge)

Anionic Radii: Ionic radii of an anion. As the negative charge increases (anionic radii) increases.

Eg. $X^{3-} > X^{2-} > X^{1-} > X$

Note: Anionic radii > Atomic radii > Cation Radii

iii) Size of isoelectronic species : Isoelectronic species are the species which have same nuclear of electrons but different nuclear charge

 $_{8}O^{-2} > _{9}F^{-} > _{11} Na^{+} > _{12}Mg 2^{+}$

Size of isoelectronic species 1/ No. Of protons (nuclear charge)

Unit of atomic radius and ionic radii in nm ,ºA ,pm

 $1nm = 10^{-9}m$

 $1^{0}A = 10^{-10}m = 10^{-8}cm$

 $1pm = 10^{-12}m = 10^{-10}cm$

Ionization Enthalpy: The minimum amount of energy required to remove the most loosely bound electron from an isolated gaseous atom. It is always an endothermic process. Its unit is KJ mole-1

 $A_{(g)} \xrightarrow{1 \text{ st I.E}} A^+ + e^ A^{2+}_{(g)} \xrightarrow{2 \text{ nd I.E}} A^{2+} + e^ A^{2+}_{(g)} \xrightarrow{3 \text{ rd I.E}} A^{3+} + e^ \Delta_i H_1 < \Delta_i H_2 < \Delta_i H_3$

Electron gain enthalpy: It is the energy released, when an isolated gaseous atom gains an electron. It may be an endothermic or exothermic process.

 $X_{(g)} + e^{-\Delta eg H1} X^{-}_{(g)}$ $X^{-}_{(g)} + e^{-\Delta eg H2} X^{2-}_{(g)} + e^{-\Delta eg H3} X^{3-}_{(g)}$

Unit of ionic enthalpy and \ddot{A}_{ig} H : The units are ev mole⁻¹ / KJ mole⁻¹ / Kcal mole⁻¹ 1 ev mole⁻¹ = 93.6 KJ mole⁻¹

 $1 \text{ ev mole}^{-1} = 23.06 \text{ Kcal mole}^{-1}$

Electro negativity: It is the relative tendency of an atom to attract electron towards itself in a covalent bond. Three different scales are used in measurement (i) Pauling (ii) Mulliken (iii) Alfred - Roche, Pauling Scale is most widely used.

Factors affecting electro negativity are I.E , E.A, & shielding

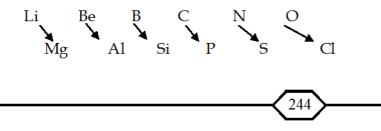
- (i) I.E, E.A, & electro negativity $\infty 1/$ atomic size
- (ii) I.E, E.A, & electro negativity ∞ effective nuclear charge

(iii) I.E, E.A, & electro negativity ∞ 1/ shielding

Screening effect: The decreases in force of attractions by the electrons of shells present in between the nucleus & valence electron

Lattice Enthalpy: It is the energy evolved when one gram molecule of the crystal is formed from gaseous ions.

Valency & oxidation No:


Valency is the combining capacity of an element. Valency remain constant in a group. It is dependent on the number of valence electrons. Valency increases from 1 to 4 & then decreases from 4 to 1 (Applicable to representative elements). Valency of noble gases is zero.

Oxidation No:

Oxidation no. It is the charge possessed by an atom in a molecule. The oxidation number of s-block elements is +1 in alkali metals & +2 in alkaline metals. d-block elements exhibit variable oxidation numb. And p-block elements possess positive well as well as negative oxidation number.

Diagonal Relationship:

The similarity in properties between the first members of second period with their diagonally opposite element of third period is known as diagonal relationship. Diagonal relationship is prominent between

Reason: These elements have similar atomic radii & polarising power. ie. Charge/size ratio is similar.

Trend of different properties across the period

 \downarrow Increases \uparrow Decreases

Trends in different properties across the period

Property	Trend	Reason	Exception
1) Atomic Number effective	Ť	Increases in number of protons in the nucleus of atoms	
2) Effective nuclear Charge	↑		Decreases sharply from gp 17-18
3) Atomic radii	\downarrow	The Principal quantum remains constant Effective nuclear charge increases	In transition metal size increases from 1 st member to 2 nd but size of 2 nd & 3 rd are almost equal
4) Ionisation enthalpy	Ļ	The nuclear force of attraction on outer most electrons increases	(i) Be > B (ii) N >O (iii)Mg>A(liv) In transition element show small variation member but I.E of 3 rd member is higher than 2 nd member
5) Electron gain enthalpy	Ŷ	Atomic size decreases Effective nuclear charge increases. Hence nuclear force of attraction increases.	Cl > F
7) Electron negativity	increases		
8) Metallic Character	decreases	Ionisation enthalpy decrease in atomic size, electronegativity increases	
9) Non metallic character	↓ Decreases	Electron gain enthalpy decreases	
10) Reactivity of metals	\uparrow	I.E increases,	Ag, Au, P+
11) Reducing property of metals	↑ ▲	I.E increases, Tendency to donate electrons decreases	
12) Reactivity of non- metals	^	Electro negativity increases	
13) Oxidising property of non metals	I	Electro negativity increases	
14) M.P & B.P of metals		Lattice enthalpy increases	
15) M.P & B.P of non- metals	↑ ↑		

Trends in different properties down the group

Property	Trend	Reason	Exception
1) Atomic Number effective	1	Increases in number of protons in the nucleus of atoms	
2) Effective nuclear Charge	Ť		
3) Atomic radii	Ť	The Principal quantum number increases Effective nuclear charge is almost constant Nuclear force of attraction decreases	In transition metal size increases from 1^{st} member to 2^{nd} but size of 2^{nd} & 3^{rd} are almost equal
4) Transition enthalpy	¥	The Principal quantum number increases The nuclear force of attraction on valence electrons decreases	(i) $Tl > In$ (ii) $Pb > Sn$ (iii) In transition element decreases from 1 st to 2 nd member but I.E of 3 rd member is higher than 2 nd member
5) Electron gain enthalpy	¥	Atomic size increases therefore distance of valence electron from nucleus increases and nuclear force of attraction decreases	Cl > F
7) Electron negativity	¥		
8) Metallic Character	Ļ	Increase in atomic size, transition enthalpy tendency to loose electrons	
9) Non metallic character 10)Reactivity of metals	Ļ	Electron gain enthalpy decreases I.E decreases, decrease the gp	Ag, Au, P+
11) Reducing property of metals	Ť	I.E decreases, decrease the gp Tendency to donate electrons	 (i) Li strongest (ii) Au, Hg, Tl, Bi, W, Re & Pb are less stronger than Ag, Cd, In, Sb, Mo, Tc & Sn
12) Reactivity of non- metals	¥	Electro negativity decreases< gp decreases	
13) Oxidising property of non metals	¥	Tendency to loose electrons	
14) M.P & B.P of metals	¥	Lattice enthalpy decreses	
15) M.P & B.P of non- metals	Ť	Molecular solids	

Downloaded from www.studiestoday.com

	Property	Across the Period	Down the Group
(1)	Effective nuclear charge	\uparrow	\uparrow
(2)	Atomic Size	\downarrow	Constant
(3)	Ionisation Enthalpy	\uparrow	\downarrow
(4)	Electron gain Enthalpy	\uparrow	\downarrow
(5)	Electronegativity	\uparrow	\downarrow
(6)	Metallic property	\downarrow	\uparrow
(7)	Oxidising Agent	\uparrow	\downarrow
(8)	Reducing Agent	\downarrow	\uparrow
(9)	Basic character of oxides	\downarrow	\uparrow
	& hydroxides		
(10)	Acidic character of oxides	\uparrow	\downarrow
	& hydroxides		
(11)	Thermal stability of	\downarrow	\uparrow
	carbonates, nitrates etc.		
(12)	Density	First \uparrow then \downarrow	

Quick glance of properties across the period & down the group

Important points to remember

(1)	Liquid element	Br, Hg, Ga, Cs, Fr
(2)	Solid non metal Idodine	Ι
(3)	Lightest Metal	Li
(4)	Heaviest & Highest O.S.	Os
(5)	Hardest element	W
(6)	Metalloids	B, Si, As, Te
(7)	Lowest electronegativity	Cs
(8)	Highest electronegativity	F
(9)	Highest ∆iH	He
(10)	Lowest ∆iH	Cs
(11)	Highest ∆egH	Cl
(12)	Highest electronegativity	F
(13)	Strongestoxidising agest F	
(13)	Strongest Reducing agent	Li
(14)	Most reactive liquid metal	Cs

M.C.Q. The most electronegative element possess the electronic configuration 1. b) $ns^2 np^4$ a) $ns^2 np^2$ c) $ns^2 np^5$ d) $ns^2 np^3$ The maximum number of electrons in d- orbital of an element with atomic number 46 is 2. a) 10 b) 18 c) 20 d) 19 The ionisation enthalpy of Cs is 375.6KJmol⁻¹ < what is the energy required to convert 3. [at mass of Cs = 133] 2.66mg of gaseous Cs completely to Cs^+ a) 7.512 J b) 7.512 KJ c) 7512.2 J d) 18782 J 4. The atomic number of elements M, N, & P are x, x-1, x-3. If P is a halogen atom then the type of bond between N & P is a) Covalent c) Coordinate d) Metallic b) Ionic 5. In the above question (Question 4) the formula of M & P is a) MP b) M,P c) MP₂ d) M_2P_3 The elements X. Y. & Z have 2, 3 & 4 electrons in the outermost orbital respectively. 6. The element which form most basic oxide is a) X b) Y c) Z d) None of the above Elements A, B, C & D belong to the 17th group. If the atomic numbers are y, y-x, 7. y + 4x + 4 & y + 2x + 2 (x = 8) > the element which is violet solid is a) C b) A c) B d) D An element X belongs to Gp16 & 5th period. Its atomic number is 8. b) 50 a) 34 d) 85 c) 52 9. The position of an element with atomic number 114 is a) Period 6 gp 14 b) Period 6 gp 16 c) Period 5 gp 18 d) Period 7 gp 14 10. The total no. of electrons in the outermost orbital in element A, B, C, D are 2, 1, 4, & 6 respectively. The elements which belongs to chalcogens is a) B b) C c) D d) A 11. The ionic radii of isoelectronic species are found to be 171pm, 136pm & 140pm respectively. The isoelectronic species are a) N^{3-} , O^{2-} , F^{-} c) O^{2-} , N^{3-} , F^{-} d) N^{3-} , F^{-} , O^{2-} b) F⁻, O²⁻, N³⁻ 12. The size of Mo is very similar to W due to a) Shielding effect b) Actinide contraction c) Poor Shielding by 4f electrons d) Poor shielding by 4d electrons 13. Choose the correct order ionization energy c) N > O < Fd) O > F > Na) N > O > Fb) F > O > N

Downloaded from www.studiestoday.com

1.4			D	
14.	The order of ionization			
	a) K > Ca > Ba	, ,	, ,	d) $K > Ba > Ca$
15.	The element with zero	electron gain enthalpy	y is	
	a) Argon	b) Lithium	c) Calcium	d) Fluorine
16.	Pick the iso electronic	species from the follo	owing	
	I. NH ₃		II. NH ⁻ ₂	
	III. CH ⁺ ₃		IV. H_3O^+	
	a) ii, iii, iv	b) i , ii , iv	c) i , ii , iii , iv	d) i & iv
17.	The element with atom	ic number 44 belongs	5	
	a) d–Block	b) p–Block	c) s–Block	d) f–Block
18.	In the third period then	e are only eight elem	ents because	
	a) It is a short period		b) The 3d orbitals a	re absent
	c) The d orbitals are al	bsent		
	d) When n=3, the max	imum number of elec	trons which can be acc	commodated are eight
19.	Choose the correct ele	ectronic configuratio	n which has the high	est difference between
	first & second ionisation	on enthalpies.		
	a) $1s^2 2s^2 2p^6 3s^2 3p^6$	$p^{6} 4s^{1}$	b) $1s^2 2s^2 2p^6 3s^2$	$3p^{6}$ $4s^{2}$
	c) $1s^2 2s^2 2p^4$		d) $1s^2 2s^2 2p^3$	
20.		mbers for unpaired e	lectron of an element	with atomic number 84
	are			
	a) N= 6, $l = 1$, $m = +$			
	c) $N=6$, $l=0$, $m=0$		d) $N=6$, $l=3$, $m=$	= 2 , $m_s = +-1/2$
21.	The elements with high			
	a) Alkaline earth metal	S	b) Halogens	
	c) Noble gases		d) Lanthanides	
22.	Choose the species wh	ich is not isoelectron	ic	
	a) Bo ₃ ³⁻	b) Co ₃ ²⁻	c) No ₃ ⁻	d) So_{3}^{2-}
23.	The formation of Mg ²⁺			
	I. Mg $_{(g)} \rightarrow Mg^+_{(g)} +$	e^{-} -737 KJ mol	[-1	
	II. $Mg^+_{(g)} \rightarrow Mg^{2+}_{(g)} +$	e ⁻ –1450 KJ mo	l ⁻¹	
	The energy required in	the second steps is h	nigher because	
	a) Mg ⁺ is more electrop	positive	b) Mg ⁺ has larger siz	e than Mg
	c) Mg ⁺ tends to loose of	only one electron	d) Mg ⁺ has smaller s	ize than Mg

Downloaded from www.studiestoday.com

24.	The first 2 nd and 3 rd ionization enthalpies of gallium are 579KJmol ⁻¹ ,1979KJmol ⁻¹ & 2962 KJmol ⁻¹ even though the iii I.P is highest Ga ³⁺ is the most stable because					
	a) The energy loss is ma	aximum resulting grea	ater stability			
	b) The size of Ga ³⁺ is sr	nallest				
	c) Ga ³⁺ is most reactive	e				
	d) It attains a stable con	nfiguration				
25.	The electronic configur	ration of M ³⁺ is [Kr]] 4d ¹⁰ Its position in th	he periodic table is		
	a) Period 4 gp 8					
26.	The electronic which w	ill exhibit maximum r	no. of oxidation states			
	a) $1s^2 2s^2 2p^6 3s^2 3p^6$	9 ⁵	b) $1s^2 2s^2 2p^6 3s^2$	$3p^{6}$ $4s^{2}$ $3d^{5}$		
	c) [Xe] $4f^{14}$ $5d^6$ $6s^2$		d) [Ar] $4s^2 4p^4$			
27.	Choose the incorrect o	rder w.r.t properly in	dicated			
	a) Electro negativity	F > Cl > Br	b) Electron affinity	Cl > F > Br		
	c) Oxidizing power F	$_2 > Cl_2 > Br_2$	d) Bond enthalpy F	$l_2 > Cl_2 > Br_2$		
28.	Choose the correct stat	tement				
	a) As shielding effect in	ncreases electro nega	tivity decreases			
	b) As shielding effect in	ncreases electro nega	tivity increases			
	c) As ionization potent	ial increases metallic	property increases			
	d) As +ve charge on sp	ecies increases ionic	radii increases			
29.	The electronic configur	ation which contain r	netals, non metals & n	netalloid is		
	a) ns^1 & ns^2	b) ns^2 , $ns^{2(n-1)d(1-1)d}$	0)			
	c) $ns^2 np^6$ & ns	d) $ns^2 np^4$ & $ns^2 n$	1p ⁵			
30.	The group in which all	the three physical sta	ates (solid ,liquid, gas)	are observed is		
	a) gp 17	b) gp 14	c) gp 18	d) gp 15		
31.	The element which exhi	ibits highest oxidation	n number is			
	a) Mn	b) Os	c) Fr	d) I		
32.	Four elements A, B, C solid & forms oxide, Choose the correct seq	A is high reactive so	olid & used to prepar			
	a) 12, 18, 9, 11	b) 11, 36, 9, 20	c) 20, 36, 11, 9	d) 9, 18, 11, 20		
33.	The element with highe	st electronic affinity b	pelongs to			
	a) Period 1 gp	b) Period 3 gp 17	c) Period 2 gp 17	d) Period 2 gp 16		
34.	The atomic no. of B =	atomic of A+18 , Sta	tements A & B to			
	a) Same pd & same gp		b) Same pd but diffe	erent gp		
	c) Different pd but sam	e gp	d) Different pd and d	lifferent gp		
		250				

35.	Element B occupies 3rd	pd & gp 16			
	Element C occupies 4 J	od & gp 3			
	The molecular formula	of compound formed	between B & C is		
	a) B ₃ C ₂	b) C ₂ B ₃	c) CB ₂	d) B ₂ C	
36.	Choose the correct stat	ement w.r.t oxidising	property of F		
	a) It is the strongest oxi	idising agent because	it has highest electron	gain enthalpy	
	b) It is the strongest ox	idising agent due to it	s small size		
	c) It is the strongest oxi	dising agent because	it has maximum electr	on negativity	
	d) It is the strongest ox	idising agent due to l	high lattice enthalpy		
37.	The name of the scien nameis—	ntist who discovered	d the element Unu &	t its accepted IUPAC	
	a) Mendeleev & Mendel	inium	b) Seaborg & Seabor	gium	
	c) Mendeleev & Dubiniu	m	d) G.T.Seaborg & Me	endelinium	
38. W	Which of the following p	roperty does not indi	cate the periodicity of	elements	
	a) Ionization potential		b) Neutron/ proton R	Latio	
	c) Bonding behaviour		d) Electron negativity	7	
39.	Properties of Li are sim	ilar to Mg because			
	a) The size of Li & Mg	are different	b) The size by charge	e ratio is similar	
	c) The charges are sam	e	d) Both are reactive		
40.	From the given set of element which is a non below	-			
	A - n = 2, $l = 1$, $m = 1$	= 0 , +-1	B - n = 4, l = 0, n	n = 0	
	C - n = 5, $l = 2$, $m = 2$	= +-2	D - n = 6, l = 3, m = 0		
	a) D	b) C	c) B	d) A	
41.	Be shows diagonal relat	ionship with			
	a) Mg	b) Al	c) B	d) Na	
42.	Which of the following	ions are not isoelectre	onic with Ar		
	a) Na ⁺	b) Ca ⁺²	c) Cl [_]	d) K ⁺	
43.	The ionisation potentia	l of N > O because			
	a) Ionisation potential i	ncreases with decreas	se in size		
	b) N posses stable half	filled p-orbital			
	c) The screening effect	in $N > O$			
	d) O is more electropos	sitive than N			

Downloaded from www.studiestoday.com

14.		perties of chromium is n	nost closely related to					
	a) Niobium	b) Tungsten	c) Titanium	d) Calcium				
45.	The electronic con	The electronic configuration of an element of chalcogen family is						
	a) [Ar] $3d^{10} 4s^2$	¹ p ¹	b) [Ar] $3d^{10} 4s^2$	4p ⁴				
	c) [Ar] $3d^{10} 4s^2$	⁴ p ³ⁿ	d) [Ar] $3d^{10} 4s^2$	4p ²				
46.	Choose the incor	rect statement						
	a) An element	with high electronegativi	ty always has high elec	etron affinity				
	b) Electron gain	n enthalpy is the propert	ty of an isolated atom					
	c) Electronegat	ivity is the property of a	a bonded atom					
	,	negativity & electron af proportional to atomic s		ortional to nuclear charg				
47.	Choose the oxide	e which is most basic C	uO, MgO, Al ₂ O ₃ & K	4 ₂ 0				
	a) K ₂ O	b) MgO	c) CuO	d) Al ₂ O ₃				
48.	An element with atomic number is	atomic number 19 wi	ill most readily react	with the element whos				
	a) 18	b) 21	c) 20	d) 17				
49.		between electron enth ement will be true	nalpy & atomic numb	er from 1 to 60, which o				
	a) Alkali metals a	re at the maxima & nob	le gases at the minimu	m				
	b) Alkali metals a	re at the minimum & no	ble gases at the maxin	ıa				
	c) Transition elem	ients at maxima						
	d) Maxima & mir	ima are not observed						
50.	In a period with i	ncrease in atomic numb	er, the metallic charac	ter of an element				
	a) Decrease acros	ss pd & increases in gp						
	b) increase acros	ss pd & decreases in gp)					
	c) increase across	s pd & increases in gp						
	d) Decrease acro	ss pd & decreases in gr	0					
51.		electronic configuration to form a highly		bine with an element on high melting point				
	a) $[Ar]4s^2$	b) [Ne]3s ² 3p ³	c) [Ne] 3s ² 3p ⁵	d) [Ar] 4s ² 3d ²				
52.	In group 14 the le	ower oxidation state be	comes more stable do	wn the group. The reaso				
	a) Inert pair effec	t	b) Decreases in ic	onisation potential				
	c) Metallic chara		d) Decrease in ele	-				

53.	Choose the correct option. Hint T=true F = False						
	I.	In the second per	riod atomic radii of E	Be is 90pm, F is 64pm,	& that of Ne is 160pm		
	II. Atomic radii decreases from Li to Ne						
	III. The increase in size of Ne is due to presence of vanderwaals force of attraction & presence of covalent bond						
	IV.	In Ne there is abs	ence of covalent bor	nd therefore the radii is	s vanderwaals radii		
	V.	The order of radi	i is Metallic > Covale	ent > Vanderwaals			
	a) T	TFTF	b) TTTFF	c) TFFTT	d) TFFFT		
54.	Cho	ose correct option	1				
	I.	Ionisation enth	alpy ∞ 1/shielding e	ffect			
	II.	Ionisation enth	alpy ∞ Chemical rea	ectivity			
	III.	Ionisation enth	alpy ∞ 1/Metallic ch	naracter			
	IV.	Ionisation enth	alpy ∞ Effective nuc	clear charge			
	a) T	FFT	b) FFTT	c) TTTF	d) TFTT		
55.	Cho	oose the correct op	otion				
	I.	C < N < F <	C Second ionisation	on potential			
	II.	$d^5 < p^3$; $d^{10} <$	p ⁶ Half filled order	of stability & fully fill	led orbital's		
	III.	$Al_2O_3 < SiO_2$	$< P_2O_3 < SO_2 Acids$	strength			
	IV.	$M^{3+} > M^{2+} > M^{2+}$	> M ²⁻ Atomic/Ionic	radii			
	a) T	FTT	b) TTTF	c) TTFT	d) TTTT		
56.	Cho	oose the correct op	otion				
	I.	Cs^+ is the most	hydrated than other	alkali metal			
	II.	Among the alka	li metals, Li has the h	nighest M.P			
	III.	Li is the stronge	st reducing agent bec	cause of low ionisation	enthalpy		
	IV.		ngest reducing agen high hydration entha	•	ionisation potential is		
	V.	Li is resemble to	o Al				
	a) F	TFTF	b) TTFTF	c) FFFTF	d) TTTFF		
57.	Cho	oose the correct op	otion				
	I.	NaCl < NaI <	NaF < NaBr Ion	ic character			
	II.	Si < P < C <	N Electronegativ	rity			
	III.	$BeCl_2 < MgCl$	$_{2}$ < CaCl ₂ < BaCl ₂	Ionic character			
	IV.	$Al^{3+} < Mg^{2+} < 2$	Na ⁺ Ionic mobility				
	a) F	TTF	b) TFFT	c) FTTT	d) FFTT		
				`			
			253	· >			

58.	. Choose the correct option						
	I.	Transition metals	s are characterised by	variable oxidation sta	te		
	II.	Elements of IB &	& IIB are transition ele	ements			
	III.	Elements of gp1	exhibit only +1 O.S				
IV. Group 17 contains only gases							
	a) TT	ſFF	b) TFTF	c) TTTF	d) TTTT		
59.	Choo	ose the correct opt	tion				
	I.	The ionisation er	nthalpy of Be > B				
	II.	d-Block element	ts are known as repre	sentative elements			
	III.	Palladium is the level	only element of fiftl	h period that has no e	lectron in fifth energy		
	IV.	The second ionis	ation enthalpy of Al	is greater than that of I	Мg		
	V.	Among Li, Be, B	,CN; Li has least v	alue of electron gain e	nthalpy		
	a) TH	FTFT	b) TFFTT	c) TFFFT	d) TFTTT		
60.	Choo	ose the correct opt	tion				
	I.	The last electron	in case of inner trans	ition elements goes to	f–orbital		
	II.	The electron affir	nity is highest for fluo	rine			
	III.	Metallic radius is	s smaller than covalen	t radii			
	IV.	Ar has lesser ion	isation enthalpy than	K			
	a) TI	FFT	b) TFFF	c) TTTF	d) TTFF		
61.	Choo	ose the correct opt	tion				
	I.	All halogens exh	ibit variable oxidation	state			
	II.	s-Block elemen	ts do not exhibit varia	able oxidation state			
	III.	the most stable of	oxidation state of Bi is	s +3			
	IV.	N exhibits -3 , $+$	3 & +5 oxidation sta	ate			
	a) TI	FTT	b) TFFT	c) FTTT	d) FTTF		
62.	Choo	ose the correct opt	tion				
	I.	O.S of 'O' in Ol	F_2 is -2				
	II.	Ionisation enthal	py is the minimum am	ount of energy require	d to remove an electron		
	III.	Screening effect	: it is the attraction of	f electron towards the	nuclear		
	IV.	Half filled orbita	ls are more stable half	f fully filled orbitals			
	a) TT	ГТТ	b) FFFF	c) TTFT	d) TFFT		

Downloaded from www.studiestoday.com

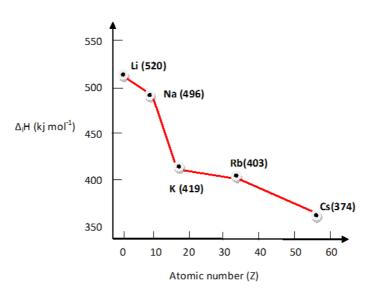
	Match the following							
63.	Set A	Set B						
	1. Strongest reductant	p) silver						
	2. Fully filled d-orbital	q) Berkelium						
	3. Noble metal	r) Copper						
	4. Actinide	s) Iodide ion						
		t) Sodium ion						
	a) 1–s, 2–r, 3–p, 4–q b) 1–t, 2–r, 3–p, 4–q	c) 1-s, 2-t, 3-q, 4-p d) 1-t, 2-s, 3-q, 4-						
64.	Set A	Set B						
	1. Liquid non metal	p) Lightest metal						
	2. Metal stored in paraffin	q) Cs						
	3. Most electropositive metal	r) KOH						
	4. Strongest alkali	s) K						
		t) group 17						
		u) CsOH						
	a) 1–s, 2–q, 3–s, 4–r	b) 1-t, 2-p, 3-s, 4-r						
	c) 1-t, 2-q, 3-q, 4-r	d) 1-t, 2-p, 3-q, 4-u						
65.	Set A	Set B						
	1. CO	I) Basic oxide						
	2. CO ₂	K) neutral oxide						
	3. K ₂ O	L) Amphoteric oxide						
	4. Al_2O_3	M) acidic oxide						
	5. SiO ₂	O) Neutral						
	a) 1–K, 2 & 5– M, 3–J, 4–L	b) 1, 2 & 5- M, 3-J, 4-L						
	c) 1–K, 2 – M, 3–L, 4–J	d) 1–J, 2 & 5– M, 3–K, 4–L						
66.	Set A	Set B						
	1. Osmium	p) Hardest metal electric						
	2. Lead	q) poor conductor of current						
	3. Tungsten	r) largest size						
	4. Caesium	s) most reactive solid matter						
		t) highest oxidation state						
	a) 1-t, 2-q, 3-p, 4-s	b) 1-t, 2-q, 3-p, 4-r						
	c) 1-t, 2-s, 3-q, 4-t	d) 1-t, 2-q, 3-s, 4-r						

67.	Set A	Set B
	1. Diagonal relationship	q)attraction towards nucleus
	2. Shielding effect	r) charge on the nucleus available for other electrons
	3. Effective nuclear charge	s) similar polarising power
	C	t) Ionisation enthalpy decreases
	a) 1-s, 2-t, 3-r b) 1-t	t, 2–s, 3–r c) 1–r, 2–s, 3–t d) 1–s, 2–r, 3–t
68.	Set A	Set B
	1. Br	p) Chalcogen
	2. Ba	q) alkali metal
	3. Se	r) alkaline earth metal
	4. Rb	s) Halogen
	a) 1-p, 2-r, 3-s, 4-q	b) 1-s, 2-r, 3-p, 4-q
	c) 1-s, 2-r, 3-q, 4-p	d) 1-s, 2-p, 3-r, 4-q
69.	Set A	Set B
	1. Hg	p) Liquid non-metal
	2. Carbon (Diamond)	q) reacts very violently
	3. Bromine	r) reaction endothermic
	4. Caesium & F	s) Liquid metal
		t) extremely high M.P
	a) 1-s, 2-r, 3-p, 4-q	b) 1-t, 2-s, 3-p, 4-r
	c) 1-s, 2-t, 3-p, 4-q	d) 1-s, 2-t, 3-p, 4-r
70.	Set A	Set B
	1. Inner transition elements	p) 3 rd period
	2. Transition	q) s & p Block
	3. Typical element	r) d–Block
	4. Representative element	s) f–Block
		t) p–Block
	a) 1-r, 2-s, 3-p, 4-q	b) 1-s, 2-r, 3-p, 4-q
7.1	c) 1-q, 2-r, 3-s, 4-t	d) 1-s, 2-r, 3-t, 4-q
71.	Set A	N 11
	1. Be $<$ Al	p) noble gases
	 Aufbau principle ns² nn¹⁻⁵ 	q) p-Block
	3. $ns^2 np^{1-5}$	r) Diagonal relationship
	4. $ns^2 np^6$	s) Block deciding rule
	a) 1-r, 2-s, 3-q, 4-p	b) 1-s, 2-r, 3-p, 4-q
	c) 1-q, 2-r, 3-q, 4-p	d) $1-r, 2-q, 3-s, 4-p$
		256

72.	Set A (Ato	mic no.)		Set B (Position of element)
	1. 100	,		p) d-Block
	2. 50			q) s–Block
	3. 40			r) lanthanides
	4.11			s) Actinides
	a) 1-t, 2-s	s, 3-p, 4-q		b) 1-r, 2-s, 3-p, 4-q
	c) 1-t, 2-p			d) 1-r, 2-s, 3-q, 4-p
73.	The position	on of eleme	nt A, B, C & D a	are
	Element	Period	Group	
	А	4	2	
	В	3	13	
	С	3	16	
	D	4	16	
74.	The molect	ular formula	a of the oxide of	each element in its highest state are
	a) AO ₂ , B ₂	₃ O _{2,} CO, D	0	b) AO, B ₂ O ₃ , CO, DO
	c) A ₂ O, B	$_{2}O_{3}, CO_{2}, D$	DO ₂	d) AO, B ₂ O ₃ , CO ₃ , DO ₃
75.			ove question the s most readily ac	oxide which is (i) most ionic (ii) amphoteric (iii) id only
	a) AO,BO	,AO,AO		b) AO,CO,BO,AO
	c) BO, AC), AO, DO		d) DO, AO, BO, CO
			Assertio	on reason type
	75–85 are the follow		reason type fo	r each question select the correct choice from
	a) Stateme	nt 1 is true	, statement 2 is t	rue & is correct explanation for statement 1
	b) Stateme	nt 1 is true	, statement 2 is t	rue but is not correct explanation for statement 1
	c) Stateme	nt 1 is true	, statement 2 is f	alse
	d) Statement 1 is false, statement 2 is tru			true
75.				
	1. F atom	n has lesser	electron affinity	than atom
	2. The size	ze of F is ve	ery small therefor	re electron electron repulsion is high
76.				
			& O [−] are identi	
				ases the size while addition of e- increases the eases increases in electronic repulsion

Downloaded from www.studiestoday.com

77.					
	1.	In group 14 +	20xidation state of	Pb is more stable	e than +4 oxidation state
	2.	The size of at	om increase from c	arbon to Lead	
78.		m t t .			
	1.		egativity of Ne is 1.	6	
79.	2.	Ne belongs to	group 18		
	1.	The solubility group	v of sulphates of a	kaline earth met	als in water decreases down the
	2.		py decreases with eases in group 2	increases atomic	c size but hydration enthalpy of
30.	1	There are 14 a	lamants in the lanth	anida carias and 1	14 alamanta in the actinida carias
	1. 2.		its of actinide serie		14 elements in the actinide series
31.	2.		its of actinue serie	s are radioaeuve.	
	1.	The ionisation	enthalpy of Be is l	esser than B	
	2.		halpy normally dec		roup
82.					
	1.	Transition eler	ment exhibits varial	ole oxidation state	es.
	2.	Electronic cor	figuration of transi	tion elements is n	$1S^{2(n-1)10}$
83.					
	1.	The boiling p $H_2S < H_2se <$		ompounds of gro	oup 16 is into the order of $H_2O >$
	2.	2 2	nalpy between hyd	rogen and the ele	ement decreases down the group.
34.	1	E is highly re	aatiya		
	1. 2.	F_2 is highly re The bond entr	active fF_2 is except	tionally high	
35.	2.			lionally high	
	1.	The d–Block e	elements are also kr	nown as transitior	n elements
	2.	They form col	ored compounds an	nd complexes.	
86.		,	,		Atomic
	ϑ		və	və	Number
	1	Atomic Number (i)	Atomic Mass (ii)	Atomic Numbe (iii)	er √ϑ (iv)
	a) (i	ii)	b) (iii)	c) (i)	d) (iv)
_				258	


- 87. Z= 34 & Z=37. What is the other name elements are known on basis of given atomic number respective?
 - a) Representative, Halogen

c) Halogen transition

- b) Tranter, Chalcogen

d) Chalcogen & representative

88.

Relation between first ionization enthalpies of alkali metals elements and their atomic number Value of 1st ionization enthalpy of Be will be

a) Below Cs b) Between Li & Na

c) Above Li d) Below Li but above K

89. The Correct decreasing order of atomic size among the following species is:

a)
$$Ca^{2+} > K^+ > Ar > Cl^- > S^{2-}$$

c) $S^{2-} > Cl^- > Ar > K^+ > Ca^{2+}$
Arrange Ce^{3+} , La^{3+} , Pm^{3+} and Yb^{3+} in increasing order of their size:

90 a) $Yb^{3+} < Pm^{3+} < Ce^{3+} < La^{3+}$ b) $Ce^{3+} < Yb^{3+} < Pm^{3+} < La^{3+}$

c) $Yb^{3+} < Pm^{3+} < La^{3+} < Ce^{3+}$ d) $Pm^{3+} < La^{3+} < Ce^{3+} < Yb^{3+}$

Which of the following reaction require maximum energy. 91.

a)
$$F \rightarrow F^-$$
 b) $H \rightarrow H^-$ c) $Cl \rightarrow Cl^-$ d) $O \rightarrow O^{2-}$

92. Given below is the E.C. Which of the following is not the correct E.C.

- a) [Xe] 6s¹ b) [Xe] $4f^{14} 5d^1 6s^2$
- c) [Ar] $3d^{10} 4s^2 4p^5$ d) [Ar] $3d^{7}4s^{2}$

93. The electro negativity of the following elements increases in order of:

a) C, N, Si, P b) N, Si, C, P c) Si, P, C, N d) P, Si, N, C

94. The electronic configuration of element A is $1s^2$, $2s^2$, $2p^6 3s^2$ while that of element B $s_{1}s_{2}^{2}, 2s_{2}^{2}, 2p_{5}^{5}$. The formula of the compound is :

a) AB b) A₂B c) AB_2 d) A_2B_6

- 95. Choose the option in which the order is not in accordance to the property indicated.
 - (a) $Al^{3+} \langle Mg^{2+} \langle Na^{+} \langle F^{-} \rangle$ (Increasing ionic size)
 - (b) B(C(N(O (Increasing first ionisation enthalpy)))
 - (c) $I\langle Br\langle F\langle Cl$ (Increasing negative electron gain enthalpy)
 - (d) $Li\langle Na\langle K \langle Rb \rangle$ (Increasing metallic radius)
- 96. Choose the wrong order
 - (a) $NH_3\langle PH_3\langle A_5H_3 (Acidic)$
 - (b) $Li \langle Be \langle B \langle C \Delta iHi$
 - (c) $Al_2O_3 \langle MgO \langle Na_2O \langle K_2O (Basic) \rangle$
 - (d) $Li^+ \langle Na^+ \langle K^+ \langle CS^+ (Ionic Radius) \rangle$

97.

	Position in perodic table			
Element	Period Gro			
А	3	2		
В	7	10		
С	2	16		
D	5	13		

I. the atomic number of B is

A) 104	B) 108	C) 110	D) 105

- II. the type and nature of compound form between A & C is
 - A) Sulphide and basic B) Oxide and amphoteric
 - C) Sulphide and neutral D) Oxide and basic
- III. Element D is

A) Metal	B) Metalloid	C) Non-metal	D) Liquid
(a) 1-B, 2-C, 3-A	(b) 1-D, 2-A, 3-C	(c) 1-C, 2-D, 3-B	(d) 1-A, 2-D, 3-A

98. The properties of elements are given below

Element		Property				
В		Liquid and forms st	rongest alkali			
С		Non-metal and shining crystal				
D		A metal used as cat	alyst with exceptiona	l electronic configuration		
I. 7	The element	t B is				
I	A) Cs	B) Ga	C) Fr	D) Na		
	260					

	II.	the element D is					
		A) Pt	B) Ni	C) Pd	D) Mo		
	III.	The element C is					
		A) Br	B) I	C) Ga	D) Carbon		
	(a) 1	-A, 2-D, 3-B	(b) 1-D, 2-A, 3-C	(c) 1-A, 2-D, 3-A	(d) 1-A, 2-C, 3-B		
	For	the elements having	ng atomic number 7,1	15,33, 51 and 83			
	I.	The atomic num stable	ber of the element/e	lements in which EX	(X=Helogen) is mo		
		A) 15 & 33	B) 33 & 51	C) 51	D) 83		
	II.	The atomic numb	per of the element whi	c form more than two	oxides		
		A) 7	B) 33	C) 15	D) 53		
	III.	The atomic numb	per of the element wh	ich is store under the	water		
		A) 15	B) 33	C) 51	D) 83		
	(a) 1	-D, 2-A, 3-A	(b) 1-A, 2-C, 3-A	(c) 1-C, 2-D, 3-B	(d) 1-B, 2-A, 3-A		
0.	Read	l the passage careful	ly and answered the fol	lowing questions			
		-	•	rons to shield the outer nt ó can be calculated by			
	Z* =	$Z - \sigma$ where	$Z^* = effective nuclear$	r charge			
			Z = Nuclear charge				
			σ = Shielding constant	nt			
	The	rules according to sl	eter are given below in	the table			
		ctrons in the \downarrow		σ per electron of orbit			
	orb	itals of shell	n	n-1	(n-2), n-3 etc		
		s or p orbital d or f orbital	0.35	0.85	1.0		
			0.35	1.00	1.0		
			L				
	The	electrons of an ator	n are classified as (1s),	(2s 2p), (3s,3p), (3d),	(4s,4p,4d), (4f)		
	T1 /	he electrons of an atom are classified as (1s), (2s 2p), (3s,3p), (3d), (4s,4p,4d), (4f) lectrons on the right contribute nothing to the shielding constant					

	A) 3.10	B) 3.45	C) 2.45	D) 2.4
II.	The shielding const	ant for a 3d electron of	30Zn is	
	A) 21.5	B) 20.8	C) 21.85	D) 21.15
III.	The effective nucle	ar charge 19K is	if σ =16.8	
	A) 1.9	B) 2.20	C) 2.22	D) 3.90
(a) 1	I-B, 2-A, 3-C	(b) 1-C, 2-D, 3-A	(c) 1-A, 2-C, 3-B	(d) 1-B, 2-B, 3-B

1	С	18	b	35	b	52	а	69	С	86	b
2	С	19	а	36	С	53	а	70	b	87	d
3	а	20	а	37	d	54	d	71	а	88	С
4	b	21	С	38	b	55	b	72	а	89	С
5	С	22	d	39	b	56	а	73	d	90	а
6	а	23	d	40	d	57	с	74	а	91	d
7	а	24	d	41	b	58	с	75	а	92	b
8	С	25	b	42	а	59	d	76	d	93	С
9	d	26	С	43	b	60	b	77	b	94	с
10	b	27	d	44	С	61	с	78	d	95	b
11	d	28	а	45	b	62	b	79	а	96	b
12	С	29	d	46	а	63	а	80	b	97	С
13	С	30	а	47	а	64	d	81	d	98	d
14	b	31	b	48	d	65	а	82	b	99	а
15	а	32	С	49	b	66	b	83	а	100	С
16	b	33	b	50	а	67	а	84	С		
17	а	34	с	51	с	68	b	85	b		

ANSWER KEY

