# Expo on Solved Past Question for MTH 111

## 2. Resolve (3X-10) / (X²-7X+10)

(3X-10) / (X²-7X+10) =(3X-10) / (X²-5x-2x+10)
(3X-10) /[ x(x-5)-2(x-5) ] = (3X-10)/[X-2][X-5](3X-10)/[X-2][X-5] = A/(X-2) + B(X-5)
(3X-10)/[X-2][X-5] =[ A(X-5)+B(X-2) ]/[X-2][X-5][X-2][X-5] will cancel out
(3X-10) = A(X-5)+B(X-2)
If x-5 = 0
When x=5
(3[5]-10) = A(5-5)+B(5-2)
15-10=A(0) + B(3)
5=3B
B = 5/3
When x =2
(3[2]-10) = A(2-5)+B(2-2)
6-10=-3A
-4=-3A
A = 4/3
Therefore,
[ A(X-5)+B(X-2) ]/[X-2][X-5] = [ 4/3(X-5)+ 5/3(X-2) ]/[X-2][X-5]Or [ 4(X-5)+ 5(X-2) ]/3[X-2][X-5]

### B. (a) In a class of 40 students, 32 are good in mathematics, 4 are good in physics and 4 do not take either mathematics or physics. How many are good in mathematics and physics as well.Solution

40 = 32-x +x +24-x
40=56-x
X=56-40
X = 16 ( are good in both maths and physics

1. Without using table find the value of Sin 75
Solution

Sin 75 = sin(45⁰+30⁰)
Sin45Cos30 + Sin30Cos45
1√2 × √3/2 + 1/2 × 1/√2
√3/2√2 + 1/2√2
Using rationalization method,
(√3+1)/2√2) ×( 2√2×2√2)
[√3×2√2 + 1×2√2]/[2√2 × 2√2][2√6+2√2]/ 8
a. If tanA = ¾ (0<a<90) and SinB = 5/13 (90<b<180). Evaluate (I) CosA + secB. (II) TanB
Solution

TanA = ¾
TanA = 0.75
A = tan–¹(0.75)
A = 36.86⁰
When SinB = 5/13
Sin B = 0.385
B = Sin–¹(0.385)
180-22.64⁰ = 157.36⁰
B = 157.36⁰
Evaluate CosA + secB.
Cos(36.86) + sec(157.36)
Cos(36.86) + 1/Cos(157.36)
0.8+(0.923) = 0.8+0.923 = 1.723
Tan B = Tan (157.36)
= 0.417
Or
When tanA = ¾
Using Pythagorean theorem
|Hyp|² = |3|² + |4|²
9+16 = 25

√25 = 5

When SinB = 5/13
Using Pythagorean theorem,

√144 = 12
Evaluate
(I) CosA + secB.
⅘+cos–¹
⅘+13/12
(48 + 65)/60= 113/60
(II) TanB
Tan B = 5/12
= 0.417

C. Show that (1+sinA)² + Cos²A = 2(1+sinA)
Solution

(1+sinA)² + Cos²A = 2(1+sinA)
Proving
(1+sinA)(1+SinA) + Cos²A
1 + SinA + SinA + Sin²A + Cos²A
Recall, Sin²A + Cos²A = 1
1 + 2SinA + (Sin²A + Cos²A)

1 + 2SinA + 1 = 2 + 2SinA
2(1 + SinA)

1. Expand (2+3x)⁵ in ascending power of x using binomial expansion. Hence solve (2.3)⁵ Solution

1. 1(2⁵3x⁰) + 5(2⁴3x¹) + 10(2³3x²) + 10(2²3x³) + 5(2¹3x⁴) +1(2⁰3x⁵)
32+240x+10×8×9×x² + 10×4×27×x³ + 5×2×81×x⁴ + 243x⁵
32 + 240x + 720x² + 1080x³ + 810x⁴ + 243x⁵
Hence solve (2.3)⁵ = (2+0.3)⁵
1(2⁵0.3⁰) + 5(2⁴0.3¹) + 10(2³0.3²) + 10(2²0.3³) + 5(2¹0.3⁴) +1(2⁰0.3⁵)
32 + 5×16×0.3 + 10×8×0.09 + 10×4×0.027 + 5×2×0.0081 + 0.00243
32+24+7.2+1.08+0.081+0.00243
= 64.36343
64.4(approximately to 1 decimal point)

### B. In how many ways can three men and two women be chosen from six men and 4 women?Solution

3 men out of 9 can be selected in 9C3, 2 women out of 4 women can be selected in 4C2
9C3 × 4C2. = 9!/(9-3)!3! × 4!/(4-2)!2!
9!/6!3! × 4!/2!2! =( 9×8×7×6!)/6!3! × (4×3×2!)/2!2!
504/6 × 12/2 = 84×6
= 504ways

### Oluwamuyide Peter

My name is seyi, the main aim of creating this platform is to help users get information like school updates, electrical engineering topics and many more for free

Check Also
Close